hyperoptのインストールと最も簡単な例

昨年参加したpycon2018
実践・競馬データサイエンス というセッションで知った、hyperopt というライブラリのメモです。
とりあえずこの記事では最もシンプルな例で動かすところまで行きます。
ちなみに、pyconの時の資料はこちら。
実践・競馬データサイエンス

なんでも、ハイパーパラメーターをグリッドサーチなどより効率的に探索してくれるとのこと。

公式サイトの通り、 pipでインストールできます。


pip install hyperopt

早速動かしてみましょう。
Basic tutorial

$x^2$ が最小になる$x$(正解は$x=0$です)を探索するコードです。


from hyperopt import fmin, tpe, hp
best = fmin(
            fn=lambda x: x ** 2,
            space=hp.uniform('x', -10, 10),
            algo=tpe.suggest,
            max_evals=100
        )
print(best)

# 以下出力
100%|██████████| 100/100 [00:00<00:00, 570.89it/s, best loss: 0.0009715421527694116]
{'x': 0.031169570942979175}

これで、 $-10<=x<=10$ の範囲を100回探索し、$x=0.031$あたりで最小と見つけてきたようです。 単純すぎていまいちありがたみが感じられませんね。 ただグリッドサーチと比較すると、仮に-10から10を単純に100分割したら区間の幅は0.2になるわけで、 それよりはずっと小さい誤差で最小値付近の値を見つけています。 (とはいえ、グリッドサーチなら $x=0$をピタリと見つけるとは思いますが。) 機械学習のハイパーパラメーターの探索等で役に立つと聞いて調べたものであり、 僕もそのように使うことが多いので、今後の記事でもう少し細かく紹介しようと思います。 一点気になるのは公式ドキュメントのこの記述。

Hyperopt has been designed to accommodate Bayesian optimization algorithms based on Gaussian processes and regression trees, but these are not currently implemented.

[翻訳]
Hyperoptは、ガウス過程と回帰木に基づくベイズ最適化アルゴリズムに対応するように設計されていますが、これらは現在実装されていません。

Qiitaなどで、hpyeroptをベイズ最適化のライブラリだって紹介している人を見かけたこともあるのですが、そうではなさそうです。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です