matplotlibでグラフのx軸とy軸のメモリの間隔(アスペクト)を揃える

matplotlibを使ってる方はご存知だと思いますが、matplotlibはグラフを綺麗に描写するためにx軸とy軸でそれぞれメモリの間隔をいい感じに調整してくれます。
この縦横の比率をアスペクト比と言うそうです。(Wikipedia: アスペクト比)

ほとんどの場合、自動的に調整してくれるのでただありがたいのですが、描写するものによってはこの比率を揃えたいことがあります。
そうしないと円を書きたかったのに楕円になったりします。
実はこのブログの過去の記事のサンプルコードの中で利用したことがあるのですが、
この間必要になったときに自分でこのブログ内から探せなかったので今回独立した記事にしました。

文章で説明していると分かりにくいので、とりあえず縦横の比率がそろってない例を出します。
シンプルにいつものアヤメのデータから2次元分だけ拝借して、散布図を書きました。


import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

# データ取得。 2次元分だけ利用
X = load_iris().data[:, 2:]
fig = plt.figure(facecolor="w")
ax = fig.add_subplot(1, 1, 1, title="アスペクト未指定")
ax.scatter(X[:, 0], X[:, 1])
plt.show()

見慣れた図ですが x軸における幅1 と y軸における幅1が全然違いますね。

この縦横の比率を揃えるには、 add_subplot で Axes オブジェクトを作るときに aspectで指定するか、
Axes オブジェクトの set_aspect 関数で指定します。
指定できる値は “auto”(これがデフォルト), “equal”(比率を揃える), 数値(指定した比率になる) の3パターンです。

個人的には add_subplot した時点でしていておく方が好きです。ただ、行が長くなるので set_aspect 使う方が pep8を守りやすいとも思ってます。

実際にやってみるとこうなります。


fig = plt.figure(facecolor="w")
ax = fig.add_subplot(1, 1, 1, aspect="equal", title="アスペクト equal")
ax.scatter(X[:, 0], X[:, 1])
plt.show()

比率が揃いましたね。
ただ今回の例だと、 “auto”の方が見やすいのでその点ちょっと失敗したと思いました。

set_aspect を使う時は、 anchor という引数を同時に渡すこともできます。
これは aspect の指定によって、グラフが実際より小さくなったときに、元の領域のどの位置に表示するかをしているものです。
‘C’が中心なのはいいとして、 ‘N’とか’SW’とかやけに分かりにくい値で指定しないといけないなと感じていたのですが、どうやらこれは東西南北をEWSNのアルファベットで表したもののようです。

自分は必要になったことがないのですが、 set_anchor と言う関数のドキュメントに説明がありますのでこちらもご参照ください。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です