ベクトルホワイトノイズ

前回の記事で弱定常過程の定義をベクトルに拡張しましたが、今回はホワイトノイズをベクトルに拡張した
ベクトルホワイトノイズを定義します。
参考: 定常過程の例としてのiid過程とホワイトノイズ

ベクトル過程 $\boldsymbol{\varepsilon}_t$ が全ての時点 $t$ において次の二つの式を満たすとします。
$$
\begin{align}
E(\boldsymbol{\varepsilon}_t) &= \mathbf{0}&\\
E(\boldsymbol{\varepsilon}_t \boldsymbol{\varepsilon}_{t-k}^{\top}) &=
\left\{
\begin{matrix}
\boldsymbol{\Sigma},& k=0\\\
\mathbf{0},& k\neq 0 \
\end{matrix}
\right.
\end{align}
$$

この時、 $\boldsymbol{\varepsilon}_t$ をベクトルホワイトノイズと呼びます。
このベクトルホワイトノイズは弱定常であり、自己相関を持たないことはすぐわかります。
$k\neq 0$の時、$k$次の自己共分散行列が$\mathbf{0}$ですから。

沖本先生の本で注意されている通り、同時点での各変数は相関を持つことができます。

ただ、一点、次の記載があるのには少し引っかかります。(初版第13刷 P.76)

$\boldsymbol{\Sigma}$ は$n\times n$正定値行列であり、対角行列である必要はないことには注意が必要である.

$n\times n$正定値行列であることは確かなのでしが、これ、必ず対角行列になるような気がします。
というのも、$\boldsymbol{\Gamma}_k = \boldsymbol{\Gamma}^{\top}_{-k}$に、$k=0$ を代入したら、
$\boldsymbol{\Gamma}_0 = \boldsymbol{\Gamma}^{\top}_{0}$ となり、これは対角行列ですよね。

僕が何か勘違いしているのかもしれませんがおそらく誤植か何かのように思います。
(出版社サイトの今日時点の正誤表には入ってないようです)

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です