僕はAnacondaで環境を構築してcondaで運用しているのですが、どうしてもcondaでは入れられないライブラリがある時など、やむを得ずpipを使うことがあります。その場合、condaで入れられる限りの依存ライブラリを入れた後に必要最小限のライブラリをpipで入れるようにしているのですが、依存ライブラリの確認漏れ等があり、想定外のライブラリがpipで入ってしまうことがありました。(この運用もそろそろ限界を感じていて、次に環境を作り直す機会があったらpipで統一したいと思っています。)
問題の一つはpipでインストールする前に依存ライブラリを調べる方法が分かりにくかったことだと思っていたのですが、ようやく事前に調べかたがわかったのでそれを紹介します。
どうやら、PyPI の特定のURLでアクセスできるJSONファイルに、必要な情報が載っているようです。ここに書いてありました。
参考: PyPIJSON – Python Wiki
バージョンを指定しない場合は、
https://pypi.python.org/pypi/<package_name>/json
バージョンを指定する場合は、
https://pypi.python.org/pypi/<package_name>/<version>/json
というURLにアクセスすると、そのパッケージ(ライブラリ)の情報が取得できます。
試しに jupyter notebook (pip install notebook でインストールするので、ライブラリ名はnotebook)の情報ページである
https://pypi.python.org/pypi/notebook/json
にアクセスしていただくと分かりますが、かなりでかいJSONが得られます。
ここからテキストエディターで必要な情報を得るのは骨が折れるので、Python使って欲しい情報を探しましょう。
偶然見つけたのですが、 pprint というメソッドのドキュメントでの使用例がこのJSONの表示だったりします。そこでは urllibを使っていますがこれは若干使いにくいので僕はrequestsを使います。
参考: requestsを使って、Webサイトのソースコードを取得する
では、試しに notebook の 情報をとってみましょう。
import requests
package_name = "notebook"
url = f"https://pypi.org/pypi/{package_name}/json"
json = requests.get(url).json()
# このJSONはかなりでかい
print(len(str(json)))
# 113699
# JSONのkeys。 この中の info が必要な情報を含んでいる。
print(json.keys())
# dict_keys(['info', 'last_serial', 'releases', 'urls', 'vulnerabilities'])
# infoの下に、多くの情報がある。
print(json["info"].keys())
"""
dict_keys(['author', 'author_email', 'bugtrack_url', 'classifiers',
'description', 'description_content_type', 'docs_url', 'download_url',
'downloads', 'home_page', 'keywords', 'license', 'maintainer',
'maintainer_email', 'name', 'package_url', 'platform', 'project_url',
'project_urls', 'release_url', 'requires_dist', 'requires_python',
'summary', 'version', 'yanked', 'yanked_reason'])
"""
# requires_dist が依存ライブラリの情報。リスト形式なので、順番に表示する
for requires_dist_text in json["info"]["requires_dist"]:
print(requires_dist_text)
"""
jinja2
tornado (>=6.1)
pyzmq (>=17)
argon2-cffi
ipython-genutils
traitlets (>=4.2.1)
jupyter-core (>=4.6.1)
jupyter-client (>=5.3.4)
nbformat
nbconvert
nest-asyncio (>=1.5)
ipykernel
Send2Trash (>=1.8.0)
terminado (>=0.8.3)
prometheus-client
sphinx ; extra == 'docs'
nbsphinx ; extra == 'docs'
sphinxcontrib-github-alt ; extra == 'docs'
sphinx-rtd-theme ; extra == 'docs'
myst-parser ; extra == 'docs'
json-logging ; extra == 'json-logging'
pytest ; extra == 'test'
coverage ; extra == 'test'
requests ; extra == 'test'
nbval ; extra == 'test'
selenium ; extra == 'test'
pytest-cov ; extra == 'test'
requests-unixsocket ; (sys_platform != "win32") and extra == 'test'
"""
# requires_python で Pythonのバージョンの指定も見れる
print(json["info"]["requires_python"])
# >=3.6
extra がついているのはオプション付きでインストールする時に必要になる物なので、基本的に、次のライブラリが必要であることがわかりますね。
jinja2
tornado (>=6.1)
pyzmq (>=17)
argon2-cffi
ipython-genutils
traitlets (>=4.2.1)
jupyter-core (>=4.6.1)
jupyter-client (>=5.3.4)
nbformat
nbconvert
nest-asyncio (>=1.5)
ipykernel
Send2Trash (>=1.8.0)
terminado (>=0.8.3)
prometheus-client
ちょっとテストしてみましょう。 pyenv で新しい環境作って、notebook入れてみます。
(version 3.8.7と微妙に古いバージョン入れていますがこれは適当です。
# 新しい仮想環境を構築
$ pyenv install 3.8.7
# 環境切り替え
$ pyenv global 3.8.7
# ライブラリが何も入ってないことを確認(出力がない)
$ pip freeze
# notebook インストール
$ pip install notebook
# 依存ライブラリと共にインストールされたことを確認
$ pip freeze
appnope==0.1.2
argon2-cffi==21.3.0
argon2-cffi-bindings==21.2.0
attrs==21.2.0
backcall==0.2.0
bleach==4.1.0
cffi==1.15.0
debugpy==1.5.1
decorator==5.1.0
defusedxml==0.7.1
entrypoints==0.3
importlib-resources==5.4.0
ipykernel==6.6.0
ipython==7.30.1
ipython-genutils==0.2.0
jedi==0.18.1
Jinja2==3.0.3
jsonschema==4.3.2
jupyter-client==7.1.0
jupyter-core==4.9.1
jupyterlab-pygments==0.1.2
MarkupSafe==2.0.1
matplotlib-inline==0.1.3
mistune==0.8.4
nbclient==0.5.9
nbconvert==6.3.0
nbformat==5.1.3
nest-asyncio==1.5.4
notebook==6.4.6
packaging==21.3
pandocfilters==1.5.0
parso==0.8.3
pexpect==4.8.0
pickleshare==0.7.5
prometheus-client==0.12.0
prompt-toolkit==3.0.24
ptyprocess==0.7.0
pycparser==2.21
Pygments==2.10.0
pyparsing==3.0.6
pyrsistent==0.18.0
python-dateutil==2.8.2
pyzmq==22.3.0
Send2Trash==1.8.0
six==1.16.0
terminado==0.12.1
testpath==0.5.0
tornado==6.1
traitlets==5.1.1
wcwidth==0.2.5
webencodings==0.5.1
zipp==3.6.0
予想してたよりずっと多くのライブラリがインストールされましたね。どうやら依存ライブラリたちの依存ライブラリ、もちろんそれらの依存ライブラリも順次インストールされたようです。ただ、一つずつ確認したところ、JSONから取得した依存ライブラリは全て入ったことがわかります。
これは実験しておいてよかったです。必ずしも、JSONから得られたライブラリだけが入るわけではないことがわかりました。
もう一点補足しておくと、requires_dist には必ず値が入っているわけではありません。当然ですが依存ライブラリがないライブラリもあります。その場合は空配列になっているのかな、と思ったのですが、 null になるようですね。 NumPyなどがそうです。
package_name = "numpy"
url = f"https://pypi.org/pypi/{package_name}/json"
json = requests.get(url).json()
print(json["info"]["requires_dist"])
# None
以上で、pipインストール前にライブラリの依存ライブラリを調べられるようになりました。
ここで取得したJSONは他にも様々な情報を持っているようなので、それらも調べておこうと思います。