statsmodelsで重回帰分析

前回に引き続きpythonで重回帰分析を行い、回帰係数と切片を求める方法の紹介です。
今回はstatsmodelsを使います。

ドキュメントはこちら。
statsmodels.regression.linear_model.OLS

データは同じものを使い、結果が一致することを確認したいので
保存してたものを読み込みます。


import numpy as np
import statsmodels.api as sm

# データの読み込み
npzfile = np.load("sample_data.npz")
X = npzfile["X"]
y = npzfile["y"]

つぎに、回帰分析に入りますが、statsmodelsで回帰分析する場合には、一点注意があります。
それは、上で読み込んだ Xとyをそのままモデルに食わせると、切片(定数項)を0として結果を返してくることです。
それを回避するために、 X に対して、全ての値が1の列を追加する必要があります。
それは、次の関数を使って実行しています。
statsmodels.tools.tools.add_constant


# 配列Xに1だけからなる列を追加する。
X0 = sm.add_constant(X)
# 回帰分析実行
st_model = sm.OLS(y, X0)
results = st_model.fit()

# 切片と回帰係数
print(results.params)
# [ 4.94346432  2.00044153 -2.99255801  3.98231315  0.01708309]

無事にscikit-learnで行った時と全く同じ結果を得ることができましたね。
これだけだと、add_constantをやらなくてよかった分scikit-learnの圧勝に見えますが、
statsmodels を使うと一つメリットがあります。
それは、各係数が0でないことの検定ができることです。
resultsの sumary()って関数を実行してみましょう。


print(results.summary())

# 以下出力です。
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.999
Model:                            OLS   Adj. R-squared:                  0.999
Method:                 Least Squares   F-statistic:                 2.136e+04
Date:                Mon, 15 Apr 2019   Prob (F-statistic):          2.24e-139
Time:                        00:59:22   Log-Likelihood:                -143.94
No. Observations:                 100   AIC:                             297.9
Df Residuals:                      95   BIC:                             310.9
Df Model:                           4                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          4.9435      0.108     45.726      0.000       4.729       5.158
x1             2.0004      0.020    101.534      0.000       1.961       2.040
x2            -2.9926      0.018   -166.158      0.000      -3.028      -2.957
x3             3.9823      0.017    231.575      0.000       3.948       4.016
x4             0.0171      0.019      0.914      0.363      -0.020       0.054
==============================================================================
Omnibus:                        2.170   Durbin-Watson:                   1.994
Prob(Omnibus):                  0.338   Jarque-Bera (JB):                1.862
Skew:                          -0.208   Prob(JB):                        0.394
Kurtosis:                       2.477   Cond. No.                         7.12
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

出力の真ん中にある通り、定数項および回帰係数のt値と、p値が出力されています。
そして、x4 は P値が 0.05より大きいので、x4の係数が0であるという帰無仮説を棄却できていないことがわかります。
もともと、x4の回帰係数は0としてサンプルデータを作っていたので、これは良い結果です。
そのほか、AICなどの値も出してくれています。

scikit-learnでこれらの情報を収集するのは手間なので、
目的によってはstatsmodelsが便利な場面もあります。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です