二項分布の期待値と分散を定義から計算してみた

おさらい:
成功確率が$p$のベルヌーイ試行を独立に$n$回行った時の成功回数を確率変数とする分布を二項分布と呼び、$B(n, p)$と書きます。
確率関数は次の式になります。
$$
P[X=k] = {}_{n}\mathrm{C}_{k}p^k(1-p)^{n-k}.
$$

期待値$E(X)$と分散$V(X)$は次の式で表されることが知られています。
$$
\begin{align}
E(X) &= np.\\
V(X) &= np(1-p).
\end{align}
$$

色々なテキストを見ると期待値や分散の導出はモーメント母関数を使われているのをよく見かけます。
最近復習と計算の練習を兼ねて、これらをモーメント母関数を使わずに定義から直接算出してみたところ、思ったより手こずったので記事に残すことにしました。

式変形の途中で二項係数の次の性質を使いますので注意してみてください。
$x\geq1$の時、$x\cdot{}_{n}\mathrm{C}_{n} = n\cdot {}_{n-1}\mathrm{C}_{x-1}$です。

証明 $x\geq1$とすると、
$$
\begin{align}
x\cdot{}_{n}\mathrm{C}_{x} &= x\frac{n!}{x!(n-x)!}\\
& = n\frac{(n-1)!}{(x-1)!((n-1) – (x-1))!}\\
& = n \cdot {}_{n-1}\mathrm{C}_{x-1}.
\end{align}
$$

それでは、本題に戻って期待値$E(X)$から算出していきます。
$$
\begin{align}
E(X) &= \sum_{x=0}^{n}x\cdot{}_{n}\mathrm{C}_{x}p^{x}(1-p)^{n-x}\\
&= \sum_{x=1}^{n}x\cdot{}_{n}\mathrm{C}_{x}p^{x}(1-p)^{n-x}\\
&= \sum_{x=1}^{n}n\cdot{}_{n-1}\mathrm{C}_{x-1}p^{x}(1-p)^{n-x} \qquad& (\text{冒頭の二項係数の性質から})\\
&= np\sum_{x=1}^{n}{}_{n-1}\mathrm{C}_{x-1}p^{x-1}(1-p)^{n-x}\\
&= np\sum_{x=0}^{n-1}{}_{n-1}\mathrm{C}_{x}p^{x}(1-p)^{n-1-x} \qquad&(\text{x-1をxに置き換え})\\
&= np\{p+(1-p)\}^{n-1}\\
&= np.
\end{align}
$$

以上で、$B(n, p)$の期待値が$np$であることが証明できました。
つぎは分散$V(X)$ですが、$V(X)=E(X^2)-E(X)^2$を利用して算出するので、$E(X^2)$を計算していきます。
$$
\begin{align}
E(X^2) &= \sum_{x=0}^{n}x^2\cdot{}_{n}\mathrm{C}_{x}p^{x}(1-p)^{n-x}\\
&= \sum_{x=1}^{n}x^2\cdot{}_{n}\mathrm{C}_{x}p^{x}(1-p)^{n-x}\\
&= \sum_{x=1}^{n}xn\cdot{}_{n-1}\mathrm{C}_{x-1}p^{x}(1-p)^{n-x}\\
\end{align}
$$
ここで、$\sum$の中の最初の$x$を、$x=(x-1)+1$と変形して、2項にわけます。
$$
\begin{align}
E(X^2) &= \sum_{x=1}^{n}(x-1)n\cdot{}_{n-1}\mathrm{C}_{x-1}p^{x}(1-p)^{n-x}+\sum_{x=1}^{n}n\cdot{}_{n-1}\mathrm{C}_{x-1}p^{x}(1-p)^{n-x}\\
&= np\sum_{x=1}^{n}(x-1)\cdot{}_{n-1}\mathrm{C}_{x-1}p^{x-1}(1-p)^{n-x}+np\sum_{x=1}^{n}{}_{n-1}\mathrm{C}_{x-1}p^{x-1}(1-p)^{n-x}\\
&= np\sum_{x=0}^{n-1}x\cdot{}_{n-1}\mathrm{C}_{x}p^{x}(1-p)^{n-1-x}+np\sum_{x=0}^{n-1}{}_{n-1}\mathrm{C}_{x}p^{x}(1-p)^{n-1-x}
\end{align}
$$
ここで、$\sum_{x=0}^{n-1}x\cdot{}_{n-1}\mathrm{C}_{x}p^{x}(1-p)^{n-1-x}$は$B(n-1, p)$の期待値なので、$(n-1)p$です。
さらに、$\sum_{x=0}^{n-1}{}_{n-1}\mathrm{C}_{x}p^{x}(1-p)^{n-1-x}$は$B(n-1, p)$の確率関数の全体の和なので$1$になります。
よって、
$$
E(X^2) = n(n-1)p^2 + np
$$
となります。

あとはこれを使って、
$$
\begin{align}
V(X) &= E(X^2) – E(X)^2\\
&= n^2p^2-np^2+np-(np)^2\\
&= np(1-p)
\end{align}
$$
が導出されました。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です