確率分布の歪度

確率分布の特徴を表す値として頻繁に使われるのは期待値と分散(もしくは標準偏差)ですが、
これらの値だけではまだ分布の特徴を完全に捕らえられているとは言えません。
特に、分布を期待値0、分散1に正規化してしまうと、この二つの値だけでは区別がつきませんが、
実際には分布の形が左右非対称に歪んでいたり、中央の尖り具合が違ったりします。

ということで、期待値と分散以外にも、確率分布の形を表す指標があり、その一つが
左右非対称生を示す歪度(わいど,skewness)です。

確率変数$X$に対して、期待値を$\mu$、標準偏差を$\sigma$とすると、次の式で定義されます。

$$
\alpha_3 = \frac{E\left[(X-\mu)^3 \right]}{\sigma^3}
$$

(統計学入門100ページの記号に揃えて、$\alpha_3$と書きましたが、これはどのくらいメジャーなんだろう?
英語版Wikipediaでは、$\gamma_1$が使われてますね。)

山が一つの確率分布であれば、
$\alpha_3>0$の時は右(正の方)の裾が長く、$\alpha_3<0$の時は左(負の方)の裾が長くなります。 具体的な例としては、カイ二乗分布やポアソン分布の歪度は正になります。 実際に計算する時は、分子の$E[(X-\mu)^3]$の計算がポイントになりますが、 これは期待値の線型性を用いて次のように計算します。 $$ \begin{eqnarray} E[(X-\mu)^3] &=& E[X^3 - 3X^2\mu + 3X\mu^2 - \mu^3]\\ &=& E[X^3] - 3\mu E[X^2] + 2\mu^2\\ &=& E[X^3] - 3\mu \sigma^2 - \mu^2. \end{eqnarray} $$ 個人的には3行目の$\sigma$が登場する形より、2行目のモーメントで計算できている形の方が使い勝手が良いと思います。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です